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ABSTRACT

In this paper, we present a robust, hierarchical Partition of

Unity Finite Element Method (PUFEM) to compute the trans-

formation between two images, which is represented by a

non-rigid, locally polynomial displacement field. The parti-

tion of unity property offers an efficient optimization scheme

by breaking down the global minimization of the mismatch

energy into independent, local minimizations. Moreover, the

regularization introduced by our approach enables us to con-

trol the range of the smoothness. Our method was applied to

cardiac ultrasound image sequences to propagate the segmen-

tation of anatomical structures of interest.

Index Terms— Image registration, partition of unity, op-

tical flow, robust estimation, cardiac ultrasound

1. INTRODUCTION

Image registration is an essential task in medical image pro-

cessing, and many subsequent processes depend on it, such

as segmentation propagation, strain quantification or back-

ground subtraction. Parametric representations such as Ra-

dial Basis Functions [1], B-splines [2, 3, 4] and other Finite

Element Methods (FEM) [5] have been widely used for image

registration. However, they use motion models with built-in

smoothness that may be difficult to adapt. In [6], we intro-

duced Partition of Unity Finite Element Method (PUFEM)

for the first time, with encouraging results on synthetically

warped images. The main advantage of this method com-

pared to the aforementioned ones is the controllability of the

range of the smoothness. Our current contributions include a

generalization of the PUFEM for registration, through the in-

troduction of a robust estimator in the matching term in order

to reduce the influence of outliers. The paper is organized as

follows. We first explain how the warping field is represented,

then we present our variational approach to register a pair of

images and our minimization strategy. Finally, we show some

results on sequences of cardiac ultrasound images.

2. REPRESENTATION OF THE WARPING FIELD

In this first section, we give an overview on the mathematical

framework of the PUFEM [7] that we use to model a vector

field u. Each component u is a real-valued function defined

on an open bounded domain Ω ⊂ R
d. The basic idea is to

locally fit u with d-dimensional polynomials and smoothly

blend them afterwards to obtain a regular representation. To

that end, we define a set N of nodes distributed over Ω. A

node n is characterized by:

- a point c(n) ∈ Ω, called center of the node n,

- an open bounded subdomain Ω(n) ⊂ R
d containing c(n),

called patch,

- an R-valued function ϕ(n) defined on R
d, called PU-

function, whose support is included in Ω(n),

- a set B(n) = {p(n)
r |r ∈ R(n)} of functions from Ω(n) to R,

called the local basis at node n, with R(n) being the set of

indices for the local basis.

We choose the p
(n)
r to be monomials of all degrees up to q,

with c(n) as origin, so that u is locally modelled at node n by

a polynomial:

u(n) =
∑

r∈R(n)

a(n)
r p(n)

r (1)

where the a
(n)
r are real coefficients.

We assume the families (Ω(n))n∈N and (ϕ(n))n∈N to

fullfil the Partition of Unity conditions i. e.:

Ω ⊂
⋃

n∈N
Ω(n) (2)

∀x ∈ Ω
∑
n∈N

ϕ(n)(x) = 1 (3)

The global representation is then constructed by blending the

u(n) with the PU-functions:

u =
∑
n∈N

ϕ(n)u(n) (4)

Unlike more conventional FEMs, PUFEMs allow a patch to

overlap its neighbours. For the sake of computational effi-

ciency, our nodes are distributed over a regular rectangular

1123978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



array with an inter-node spacing hi along the ith coordinate

axis (i = 1, . . . , d). Each patch Ω(n) is an h1×. . .×hd cuboid

centered on c(n). This configuration is illustrated on Fig. 1.a.

The ϕ(n) are separable piecewise polynomials, equal to 1 at

c(n) and decreasing with the distance to c(n) (cf. Fig. 1.b).

Notations: in the following, ui denotes the ith component of

(a) Nodes and patches (b) PU-function

Fig. 1. Example of Partition of Unity configuration in 2D.

the displacement field u and a
(n)
i,r the coefficients representing

ui; a(n) is the vector obtained by piling up the a
(n)
i,r at node n

and a by piling up the a(n). Similarly for a second field v, we

adopt the notations vi, b
(n)
i,r , b(n) and b.

According to (1) and (4), u is as regular as the PU-

functions per se. However, we want to impose a controllable,

“long range” regularization, or rather, globality. To this end,

we introduce the notion of Sobolev non-conformity between

two neighbouring nodes m and n through the energy:

S(m,n)
κ (u) =

∑
|α|�κ

∫
Ω(m,n)

ϕ(m)ϕ(n)
∥∥∥Dαu(m) − Dαu(n)

∥∥∥2

where α = (α1, α2, . . . , αk) and Dα is the partial derivative

operator in the standard multi-index notations. This local

energy has an intuitive interpretation: it penalizes the global

field u if its local representations at nodes m and n and their

derivatives up to order κ differ in the overlapping region

Ω(m,n). The global conformity energy is then defined by:

Sκ(u) =
∑
n∈N

∑
m∈V(n)

S(m,n)
κ (u) (5)

where V(n) is the set of neighbours of node n in 4-connexity.

This inter-node conformity constraint is a key feature of our

method. This energy is zero when all the local representations

are equal, i.e. when u is globally polynomial. Thus, in the

case of local affine bases, global translation, rotation, scaling

and shearing are not penalized.

3. ROBUST REGISTRATION FORMULATION

A reference image R and a template T are registered by min-

imizing the mismatch energy:

M(u) =
∫

Ω

ρ
(
T ◦ (id + u) − R

)
(6)

w.r.t u. ρ is a convex M-estimator in the form ρ(s) = Ψ(s2),
which has the effect of reducing the influence of outliers (see

[8, 9, 10]). For example, we choose Ψ(s2) =
√

s2 + ε2. This

energy is difficult to minimize as such and we need to remove

the nonlinearity due to T and ρ.

We first decompose the optimatization into optical flow
steps. Considering one iteration, let u be the current un-

known, v the solution of the previous iteration, and δu the

unknown increment so that u = v + δu. In order to remove

the nonlinearity in the argument of ρ in (6), we use a first

order Taylor expansion of T:

T ◦ (id + u) ≈ T ◦ (id + v) + ∇T ◦ (id + v) · δu

The framework presented in section 2 enables us to derive

a simple scheme by approximating the problem by a set of

independent subproblems, each confined to a node. By ex-

panding δu as in (4) and using property (3), M(v + δu) is

approximated by:

∫
Ω

ρ

⎛
⎜⎝ ∑

n∈N
ϕ(n)

[
T ◦ (id + v) − R + ∇T ◦ (id + v) · δu(n)︸ ︷︷ ︸

=̂ ξ(n)

]⎞⎟⎠
ρ being convex, we can apply Jensen’s inequality [11] to get:∫

Ω

ρ
( ∑

n∈N
ϕ(n)ξ(n)

)
�

∑
n∈N

∫
Ω(n)

ϕ(n)ρ(ξ(n))︸ ︷︷ ︸
=̂ M̃(n)

v (δu(n))

This provides an upper bound for M(v + δu) which we min-

imize instead: if all the local energies M̃(n)
v (δu(n)) can be

made small, then we are sure that M(v + δu) will be small.

This upper bound is interesting because it removes the depen-

dencies between the nodes.

However the nonlinearity due to ρ still remains. It can

be shown that each M̃(n)
v (δu(n)) can be approximated by a

quadratic form of the δa
(n)
i,r :

M̃(n)
v (δu(n)) ≈ (δa(n))T M(n)δa(n) + 2(g(n))T · δa(n) + C

where C is a constant. M(n) is a positive semidefinite, sym-

metric matrix and g(n) a vector; their entries are defined by:

m
(n)
(i,r),(j,s) =

∫
Ω(n)

ϕ(n)Ψ′
(
(Tv − R)2

)
∂iTv ∂jTv p(n)

r p(n)
s

g
(n)
i,r =

∫
Ω(n)

ϕ(n)Ψ′
(
(Tv − R)2

)
(Tv − R) ∂iTv p(n)

r
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where Tv =̂ T ◦(id+v) and ∂iTv =̂ ∂iT ◦(id + v). The above

inequality and the latter quadratic form are generalizations of

the results established in [6].

Thus, adding the inter-node conformity constraint (5), the

total energy we consider at each iteration is :

Ẽ(a) =
∑
n∈N

(
a(n) − b(n)

)T

M(n)
(

a(n) − b(n)
)

+ 2
∑
n∈N

(g(n))T ·
(

a(n) − b(n)
)

+ γ Sκ(a) (7)

with γ being a parameter that controls the globality of u. For

example, if all the local representations are affine, then in-

creasing γ forces u towards a global affine displacement field.

4. MINIMIZATION

The conformity term Sκ(a) is a quadratic function of the co-

efficients a
(n)
i,r , and hence so is Ẽ(a). Minimizing (7) is then

equivalent to solving a linear system of size
∑

n CardR(n).

This system is sparse since:

- the approximated matching term (i.e. the upper bound de-

rived above) does not relate coefficients from different nodes,

- the conformity (5) only relates nearest neighbour nodes.

We use conjugate gradient descent which is well-suited for

solving sparse linear systems [12].

The scheme we have just described is integrated in a hi-

erarchical environment in order to avoid local minima. We

define a dyadic pyramid of PU-configurations. Once the so-

lution has been computed at one level, it is projected on the

basis of the next finer level to provide an initialization (see

details in [6]). This global-to-local strategy is coupled with

a multiscale approach: starting with a low-resolution image

(high scale) at the coarsest level, we decrease the scale as the

node array is refined.

5. RESULTS

We first show results on a pair of synthetic binary images to

demonstrate how the globality can be controlled through the

parameter γ (cf. Fig. 2). The local bases are chosen affine.

The transformation is globally affine when γ is large (second

image), and adapts locally as γ decreases.

We applied our method to sequences of cardiac ultrasound

2D images, in order to track the endocardium of the left ven-

tricle. To this end, we propagated initial manual segmenta-

tions by successively applying the displacement fields com-

puted from each pair of consecutive frames. We used a 4-level

pyramid starting from 5 × 5 nodes for the coarsest level to

33×33 nodes for the finest, the image being of size 608×428
pixels. The local bases are chosen quadratic.

(a) (b) (c)

Fig. 2. The template (upper left) has been registered to the reference

(a,b,c) with decreasing values of the parameter γ: (a) 50 , (b) 5 and

(c) 0.1 . The first line shows the template’s contours superimposed

on the reference image. The second line displays the deformations

of an initially regular grid.

Fig. 3 displays results on a long-axis view sequence. No-

tice that the valve has an out-of-plane motion between the

last two frames, but does not disturb the propagation. Fig. 4

displays results on a more difficult case: the sequence is low-

contrasted and exhibits out-of-plane motion.

6. SUMMARY AND CONCLUSION

We have proposed a generalization of the hierarchical Parti-

tion of Unity Finite Element Method presented in [6] to solve

a variational approach to image registration. This new method

offers several features to improve the robustness to outliers:

the introduction of an M-estimator in the matching term is a

well-known technique and can be easily integrated in the op-

timization scheme; the global-to-local strategy and the inter-

node conformity constraint enable us to control the globality

of the field, as opposed to existing parametric methods. In

order to demonstrate the performance of our algorithm, we

have applied our method to a sequence of cardiac ultrasound

images to track the myocardium of the left ventricle.

In future works, we shall consider cases where abrupt spa-

tial variations in the displacement field occur. The globality

constraint may prevent the algorithm from correctly capturing

the motion field. To deal with this issue, we shall introduce

M-estimator techniques in the conformity penalty term.
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Fig. 3. Propagation of a segmentation of the left ventricle’s endo-

cardium in a long-axis view sequence. The initial contour was man-

ually drawn (top left image). The second column shows the propa-

gation of a grid, in order to vizualize the deformation field.
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